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ABSTRACT

Stochastic approximation procedures are considered for the estimation of

parameters using incomplete data. One procedure is stated and illustrated

which often leads to asymptotically efficient estimators. Others are

developed which, although possibly not optimal in the above sense, will be

very much easier to apply. This will be particularly advantageous when quick

recursive estimates are required. Examples are given and a link is made

between one of the sub-optimal methods and the EM algorithm.
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SIGNIFICANCE AND EXPLANATION

Many statistical problems involve the estimation of parameters in a model

using data which are incomplete. For instance, some values may be missing

altogether or they may be "censored" in that their exact values are not known

but are known to fall in a specified range.

Almost without fail, estimation using such data is significantly more

awkward than if they were complete and, although numerical methods are

available, there is scope for faster procedures, even if the resulting

estimates may not be quite as "optimal". This paper describes methods which

incorporate the data one at a time into the estimation procedure. This leads

to recursive estimates which may well be desirable in themselves, if the data

do arrive sequentially. The procedures described are of the "stochastic

approximation" type, for which extensive theory exists.

Most emphasis is placed on two such recursions, one which is asymptotical

optimal and one which, although suboptimal, will be very much simpler from a

computational point of view. This latter method can also be neatly linked to

one of the main procedures for nonrecursive estimation in incomplete data

problems, the EM algorithm.

A few illustrative examples are given.

"TC>
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RECURSIVE PARAMETER ESTIMATION USING INCOMPLETE DATA

D. M. Titterington

1. INTRODUCTION

Parameter estimation using incomplete data tends to be much more awkward

than with a corresponding set of complete data. Maximum likelihood

estimation, for instance, usually requires numerical methods, such as the

methods of Scoring and Newton Raphson. Dempster et al (1977) give a

compendium of incomplete data problems and describe an alternative numerical

iterative procedure, the EM algorithm, which has the mixed blessings of being

of first order but monotonic and easy to program. If very large data-sets are

involved, then numerical procedures can become very expensive. Their

application to survey data with nonresponse could be a case in point.

We shall illustrate here some alternative recursive procedures in which

the data are run through once, sequentially. Such a procedure will take the

form

8* G (8*, y k-01
k+1 k -k k+1' k 0,1, ... (1)

where 8 denotes the parameter(s). 80 denotes the estimate after k
-k

observations and Yk+1 denotes the (k+1)st observation. If there are n

observations altogether, then the estimate we would quote is 8*.
-n

When data do arrive sequentially, as in control engineering contexts,

such recursive procedures may be essential to give "quick" up-to-date

parameter estimates, particularly if sequential design is to be incorporatedg;

see Chapter 7 of Goodwin and Payne (1977), Titterington (1980) and references

therein. In the more usual statistical contexts, we shall have to impose some
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ordering on the data, in conflict, say, with the likelihood principle

(Anderson, 1979). We shall show that, asymptotically, the ordering is

irrelevant and, in a later paper (Titterington and Jiang, 1982), evidence will

be presented that the ordering effect is not very important in moderately

sized samples.

Some simple sequential estimation procedures do not suffer from the

criticism of order dependence, as is shown by the following illustrations in

which there is no incomplete data.

Example 1.1. Independent Bernoulli trials

Suppose yY 2, ... are independent and that P(yk-1) e = 1-P(Yk=0),

k - 1,2, .... Then the recursion

k+ + (k+1) (Y - k ), k =0,1,

00w=0 ,

generates exactly the MLE's of 6 as the data are incorporated.

Example 1.2. Exuponential-family type models

Suppose yIIy 2, ... are independent and that each has p.d.f.

log f(Y11) " const + t(y) T + a(#)

where t is a vector and t(y) the vector of sufficient statistics for j.

Let 0 - 1() " Z(t(y) q).
A

Then, given yl''''Yk' k' the WEZ, satisfies

-;k

i-I

where - t(yi), i - 1,...k.

We may calculate {^ k} recursively from

1% A A A
a 1 + (k+1 - .) k 0,1,..., - o
-k -__) k -0

-2-



The link between Example 1.2 and recursive-least-squares is clear; see

also Harrison and Stevens (1976).

In these examples the recursions simply give a convenient way of

calculating the usual estimates, and are unnecessary when considering the

asymptotic theory and general performance of the estimators produced. Our

objective is to develop a similar approach to cope with the possibility of

incompleteness in the observations.

-3-



2. SOME RECURSIVE PROCEDURES

Suppose y1 .Y 2 # ... are independent observations, each with underlying

probability density function (p.d.f.) g(yle), where e e 0 c Rs, for some

s. Let S(y,e) denote the vector of scores. That is,
a

Sj(y8) =('2 . log g(yIt), j =
j

Let D 2(y,O) denote the matrix of second derivatives of log g(yl.) and let

I(e) denote the Fisher information matrix corresponding to one observation.

It is assumed that all derivatives and expected values exist and that

eo (y,O) = f _(y,) g(yidy -

I(e) " {S (Y't) ST(Y'j )) _ _Re 112 (y,

Consider the recursion

6* 0* + {kI(8*)1 S(Yk,8), k = 0,1,... (2)
-k+1 -kc -k -k+ I '-Ic

which is recognizable as a stochastic approximation procedure. Under

regularity conditions over and above those alluded to above, as k +,

/i (0- - ) + N(O, (80)) , (3)
-k --O - -O-

in distribution, where 0 denotes the true parameter value. This result

appears in Sacks (1958), Fabian (1968), Nevel'son and Has'minskii (1973,

Chapter 8) and Fabian (1978).

We now state the conditions required for the most useful version of the

result in Fabian (1978).

(Cl) Continuity.

(1) f (S(y') - 9(y,Ot))T(S(yj) (y,e))g(yl)dy 0

as 6 + 8 in 0.

(ii) If, as k " *, + ' * + , then
k( -_)] - -

-4-



(C2) "Definiteness".

-(6-)T E S(y,6 ) > 0 for 6 e (4)

(C3) Boundedness

zlI(6)-ls(y,6)g2 4 C{1 + o6-6} (5)
2T

where lul 2 u u and C is independent of 6.

One further comment must be made which has particular relevance to some

of the examples in Section 3, namely that it is assumed, in the theory, that

e* e e, for all k. In practice, (2) may have to be modified to ensure
-k

this. For instance, if e is a probability (see Example 3.3, for instance)

an additional constraint should be added, such as: e < 6; < I-e, for all

k and some small positive e.

Given all this, (3) is guaranteed.

If (3) holds for (2) then it also will for

6+ - * + ((k+1)I(-*))-I S(Y 8*), k - 0,1,.... (6)
-k+1 -k -k k+l -k

It is easy to check that the recursive calculations of the MLE's in

Examples 1.1 and 1.2 are special cases of (6).

As we shall see in some of the Examples in Section 3, complications may

arise in applying recursions (2) and (6), in the computation and inversion, in

the multiparameter case, of 1(8*). Numerical integration is often necessary
-k

and the fact that we are dealing-with incomplete data will add to the

complications. Suppose, with reference to (2), we write

V -(kI(8*)) 1

k -k

Then the following alternatives to V suggest themselves.
Tk

(i) kI(8'), where 0' is an initial parameter estimate or one that is

updated infrequently.

-5-



k
(ii) I Oi(4*), where J.A*) denotes the sample information matrix fromi-1 --.

the ith observation.

k

i-I

k
(iv) i(0 ) "

i-I

Suggestion (i) corresponds to a familiar modification to the Method of

Scoring for obtaining maximum likelihood estimates. Suggestion (ii) is

similar to Newton's method for the same purpose. Suggestions (iii) and (iv)

would Le very useful in providing recursive calculation of the {V1 }. If

(iv) is used, for instance, we obtain

S + 1(.*) (7)
Vk Vl -k

Recursion (2), with exactly this modification, was used by Walker and

Duncan (1967) in the recursive estimation of parameters in a linear logistic

model for quantal response. In their problem the observations are not

identically distributed, so that
k

Vk - -i (i-I

They are particularly fortunate, in that each Ii(0) is of rank one so that,

given V0 , all other (Vk } can be obtained without further matrix

inversion: see their equation (5.4).

Theoretical and practical investigation of these modifications would be

worthwhile.

We shall concentrate, however, on the following modification of (2),

which suggests itself especially for incomplete data problems.

0 8 + (k1 (8 )11'S(y ,0 ), k - 0,1,...()
-k~l -k c -k - k+l -k

where Ic (8) denotes the Fisher Information matrix corresponding to a

complete observation. For future reference we denote by equation (9) the

-6-



version of (8) corresponding to (3). Although these recursions will not lead

to asymptotic efficiency, conditions (4) and (3) sometimes guarantee n-

consistency and asymptotic Normality. We extract the following theorem from

Sacks (1958) and Fabian (1968). We state the univariate version, for future

application to the first three examples in Section 3.

Theorem 1.

Given conditions corresponding to those above and provided

21(8 0)I c(e 0) > I,

/ k ( - 60 ) N(0, C (0)2z(e 0)/{2l(B 0) 1)1 - 1)

in distribution as k + 0.

As will become clear, it does not always happen that 21(6) > I C(80 ).

Suppose

0 < 8 < 21(e0)/Ic (8) <

and we consider the recursion

8 k+1 - Wk + k-/2 (1+0)cl k)-lS(y') ' k # 0,1,... (10)

Then, according to Fabian (1968),

kB/2(0 - 8 + N(O, I (6 )-2I8 )/{23(8)' (901 - 8)k 0 cO0 0 0 c

in distribution, as k +

Thus, provided there is some information in the incomplete data

(I(8) > 0), a modified version of (8) leads to a consistent, asymptotically

Normal estimator.

Multidimensional versions of these results will be required in a complete

study of Example 3.4 but this will not be undertaken in the present paper:

see Sacks (1958) and Fabian (1968).

The important practical advantage of recursions (8), (9) and (10) is that

I (8) will usually be much easier to evaluate and, if a matrix, to invert,C-

than I(e).

-7-



In the following section we derive versions of some of these recursions

for a few simple examples involving incomplete data. As Y1 1 Y2 ...

represents a sequence of incomplete observations, so xj, x2,... will denote

corresponding "complete" versions. Thus, given y, x belongs to a subset

X(y) of the overall sample space X and, if f(xlO) denotes the p.d.f.

of x, then

g(YlD f fX(Y) f(xlt)dx ,

See Dempster et al (1977).

-8-
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3. SOME EXAMPLES

Example 3.1. Trinomial with incompletely classified observations.

Independent observations are obtained from a trinomial, with cell

probabilities - 8, - 8, 1-8 (0 < e < 1). However, all that is known is
2 2'

whether or not the observation belongs to cell 1 (x = 1 as opposed to x = 2

or 3). Let

y = I if x = 1

=0 if x =2 or 3 •

Then

log g (yIe) = y log(- 8) + (1-y)log(1 - 2 8)

S(y,6) = y/e - (1-y)/(2-6)

and I(8) = 8-(2-8)-1

Recursion (2) is

* = 8* + k- {(2-8*)y - 6*(l)
k1 k k k+1 k k+1

It is not hard to show that conditions (4) and (5) of Section 2 are

satisfied.

Similarly, I (8) = 8-1(1-8) -  and recursion (8) isc

k+1 a k k k (1- k ){y k+1 / k (1-Yk+1 k(2-6k1

However, for all 0 < 8 < 1, I(8)/I (8) = (1-8)/(2-6) < - so Theorem I
c 2

will not hold and {k I is not vik-consistent. In spite of this it is

possible to establish strong consistency of [6 k by appeal to a theorem of

Gladyshev (1965). Also, for any 80 > 0, a modified recursion of the form

(10) can be used to obtain a consistent, asymptotically Normal estimator.

Example 3.2. Censored exponential.

Suppose there is censoring on the right at t0  and

log f(xle) = -log a - x/8 (x > 0, 8 > 0)

Thus,

-9-
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y-x if x t 0

Otherwise y is the knowledge that Ox > to", so that

log g(yl8 ) - -log 9 - y/6 if x ( to

- -t0/e, otherwise

It turns out that (2) is

8* = ek + {k(1 - exp(-t /8))} -(y - 0*) (X tO)

+ k( - exp(-tO/8*))) -t O, otherwise

and 1(0) = - exp(-tO/6)1/6 2 .

Condition (4) is satisfied, its left hand side being

(6-e)(1- exp(-t /6))/(1 - exp(-t /6))
0 0

However, the left hand side of (5) is
-t /6 -2 -t6/ -to/0
e- e( - e t )(2e2-286+62) + 2(0- 6 )t0e ) ,

which tends to infinity as 6 + 0. If, however, we restrict 6 > e > 0,

condition (5) will hold.

Since Ic (8) -2, Theorem I holds provided I - exp(-t 0/8%) >j, that

isif to > e log 2. Recursion (8) is

0

0k+1 = +k-1(yk+1 k) (xk+l 4 tO)

e + k- t0  (otherwise)

Again, however, Gladyshev's theorem shows strong consistency of 0 k)

for any t0 > 0. Recursions like (10) may also be considered.

Example 3.3. Estimation of mixing weights.

We consider the case of a mixture of d known densities

(fj( ) j - 1,...,d).

d-1 d-1
g~yJ 1 - f 0f(Y) + ( I %)f(Y)

j- d-



where the 8 ,...,e d  are all nonzero probabilities. Then

S (yle) - (f ()- fd(y)/g(yI!)' j - I,...,d-1 ,

D 2(y 8 )D- -{f (y) - f (y)1(f (Y) - f (y))/{g(y)18 )12

- d r d

and

I jr() - f r Y) - f d (yI)g(ylB)-Idy

j,r - 1,...,k-I .

Verification of the regularity conditions is subsumed in Kazakos (1977)

and Smith and Makov (1978). For the special case of d - 2, with e1 - e,

we obtain, for (2), as in Kazakos (1977),

' - 8' + {kI(*))-1{ f (y+) - (y )lg(y +11k), k - 1,2,...,
k1 kk I k+I 2 k+ kIk

with

I(e) - j (f1 (y) - f2 (y)) 2g(y)B)- dy

We maintain our concentration on the case d - 2.

Here the inccmpleteness is caused by ignorance of the source of an

observed y;-is it component I or component 2? We may write

x - (ys)

where zT - (1,0) or (0,1) according to the source. Thus

log f(xj8) - zTu(e) + z Tv(e)

where

MT(e) - (log e, log(I-8))

and Te) - (log fI(y), log f2(y))

Thus, I (8) - 1/6(1-6) and (8) becomes
c
8 e + k 8 (1-0 )(f (y f -)/gy l
k+1 k k k 1 k+ ) - f2(yk )}/glyk~ll18) . 11)

Asymptotically, if 1(6) > I (6), Theorem 1 holds. Otherwise, strong
2 c

consistency can still be guaranteed (see Makov and Smith (1977), Smith and

Makov (1978)) and recursions like (10) may also be used.

-11-



Example 3.4. Mixture of two univariate Normals.

Let

g(YI!'E')- ep(YIIJ,* 1 ) + e2P(yI 2 1 2)

W O1P1 (y) + 62P2(y) ,

where 0 < 8 - 1-62 < I and

P(ylp,f) - (2w)lJ/2exp(- j (x-U)2/ }

Then the component of the score vector are

3 log g(y)/ae9  W (pllY) - p2 y)}/g-y)

3 log g(y)/p j . (Y-Pij)wj(Y)/ j, j - 1,2,

3 log g(y)/3* {(yj)2 - wy)/2f, J 1,2,

where wi(Y) = O pj(y)/g(y), j - 1,2.

Note that, for j - 1,2, wj(y) is the conditional probability that an

observation comes from component J, given its datum value, y.

Here we do not go with the details of the verification of conditions (4)

and (5). They will be complicated, as is application of the recursion (2),

itself, because the information matrix is a complicated matrix, even for

univariate mixtures, let along multivariate ones. As in Example 3.3,

numerical integration is necessaryi see Behboodian (1972).

To point out this awkwardness in application is the main reason for

mentioning this example. It motivates strongly the use of recursions like

(8). For this we require Ic(eI

Again x - (y,z) and now
log f(x-!'.E± S T T

where, for instance,

v 1124 ) -log p(YI 1 .1)

-12-



If the parameters are ordered as 81' MI v *2' 51' then

I Zc(61, # ) -diag{8 1'(1-1 a1/#1

f (.8)/5,61/2#2,2 (1-51)/2#21

and recursion (8) becomes very simple, as follows.

-(k+1) i(k' -1 (k) ((k)1 1 + k wI k+) -1

;(k+l) -(k) (k) -1 (k) W

;( -l ;k + (ke (k I w.W (y My 2)

- j i k+1 k+1 j -
(k) (k) .,(k) (k) ( k) (k) (k)

where w(y) - Wj1P k), )/g(y1 (k), ) j - 1,2

-13-



4. A CONNECTION WITH THE EM ALGORITHM

As pointed out by Fabian (1978, Section 5.8), there is a strong

relationship between recursion (2) and the Method of Scoring. Recursion (8),

on the other hand, is similarly linked to the EM algorithm.

Suppose xl,...,x n represent n independent complete observations,

corresponding to Y1,...,y n . Define

n
Q(!!') Ze, log f(xiIO) ly1,'..y n }

The EM algorithm generates a sequence (6 } of parameter estimates by-u

repeating the following double step.

2-step: Evaluate Q(616 ).

N-step: Choose e - e to maximum Q(018 U

Consider the following recursive version.

At stage k + 1, with current estimate e , define

L k+l(1  { flog f(X k+1 ) 1Y k+1 + L k (12)
e k

choose 0 - to maximize Lk+ (6). Finally, estimate 6 by -.

Both the EM algorithm and its recursive version may be used in Bayesian

analysis for the computation of posterior modes. In (12) we can initialize

using

L0(0) - log p(O)

where p() is the prior density for 0, with mode

Theorem 2. Approximately, given appropriate regularity, recursion (12) can be

written as

+ ((k+1)I(0))-k+1 -k c -k -(Yk+1 *!t)

which is the recursion we called (9) in Section 2.

-14-



Proof: To clarify the steps we omit some subscripts and rewrite (12) as

ZX+1(0) - Be, (log f(xIt)Iy} + Lk()

where ' maximizes L (e).

We derive the recursion while showing, inductively, that approximately

for 6 near e',

Lk(. ) - Lk') - _ k '

For x e X(y), define the conditional density

k(xly,O) - f(xlO)/g(yIl)

Then by Taylor expansion, approximately,

log f(xle) - log fCxje') + (-8,)T P, log f(xl0')

1 2, log fcxjO') • (e-81)

log f(xle') + (0-61)T{Scy,e') + , log k(xly,O')1

1(-e T 2
+C ) D, log f(xJO') (8-0')

Given appropriate regularity,

, {, log k(xly,')Iyl =0

so that, approximately,

L (6) -E ,logf (xIO')Iy) + L (8') + (8-8)TS(y,8l)

1 T (13)
1k - (e')}(e-6'

- - (8-8') (Ck+1)I cO'))C8-e')

The maximizing 6 is

l ' + {(k+l)I c(6')}-s(y,') , (14)

which is the required recursion.

Also, from (13),

c + (- _T((k+l)I C,)(ee)
k + 2-, - -. .. . .

where c is independent of 6

-15-



C - I (-_B)T{(k+l)Ic (')1(e- ), from (14)
1 (0 A)T A)

c- (e-e)T((k+l)I (e))(e-e)

Theorem 3. In exponential family models in which 6 is the expected value of

the sufficient statistic, the recursion is exact.

Proof: Suppose log f(xO) - b(x) + T (6) + a(j(O)) where t -(x) is a

vector of sufficient statistics and

38 (t) -8

Then

Q log f(xIO) - I•()(t-)

Suppose 4 Lk(O) " kIc(8)(O'-O). This certainly holds for k - I. Then the

stationarity condition for k+1 (6) is

I ( 0)(t'_9) + kI (O)(8) - 0 ,(15)

c -- c -

where t' - %1 {log f(xj8)Iy). Thus, if all information matrices are

nonsingular,

I c(0')(t-6) + kI (80)(81-0) = 0~
A - - - I

AA

-- -- - C. ..i.e. _ -0_' + {(k+l)lce'c(O*e')(tM-6,)_

- e + {(k+l)Ic ('))1 S(y1 1,) .

In fact, from (15), (k+1)i - t' + kG', so L at
SA

SL k+() - (k+l)Ic()(8-0)

These results can be illustrated by applying recursion (12) to the

examples. in 3.1, 3.2 and 3.3, we obtain exactly the same formulae as with

recursion (9). In Example 3.4 the recursion on 8 is the same and the

others differ very slightly as follows.

(k+) ~ (k) + f(k) )(yk+ - (k))j - j rj (k+1 1 -

(k+1) (k) + f(k) ) + M (k) )2 (k) (Yk)
i " j kk+1 - k+1

J - 1,2, where

f(k)() - -(k) (k) ..-I (k)_(k(y .{kOj + Vj (y')} wj (y),

-16-



Note that f (k) (y) - NO(k) 1- (k) (y) for large k.

Bayesian versions of some of these recursions have appeared before: that

for Example 3.3 (c.f. (11)) in Makov and Smith (1977) and Smith and Makov

(1978)1 that for Example 3.4 in Titterington (1976).

For the exponential family models considered in Theorem 3 the recursions

have particularly simple forms, reminiscent of Example 1.2. Recursion (2) is

0* e + {kI(O*)) I (9'){3(t* Iy ,8*) - 0.)
-k+1 -kc -k c -kc -k+ I k+ 1 -k -Ic-

Recursion (8) is

e* -e + +k {3(t* ly ,' .
-k+ -k-k+ I k+- -k -k

-17-



5. DISCUSSION

Although, whenever it is relevant, recursion (2) is the ideal choice, it

is likely to be complicated to apply in large problems. There, the

modifications of recursions (8) and (10) promise to be much easier in

practice. only a few examples have been described and, apart from the

mixtures problems, no missing data example has been discussed. This is

rectified in Titterington and Jiang (1982), with emphasis on exponential

family and, in particular, multivariate Normal distributions. There, also,

are provided numerical details about the relative performance of some of the

procedures, which is an important aspect of the study. As Makov (1980) points

out in the context of Example 3.3 with d - 2, recursion (2) "ay b

unsatisfactorily unstable, rilative to (8) or (9), particularly in the irly

stages.

We finish with a final .,i'e'tit about the 34 algorithm. Recursion (2) is

related zo the method of Scoring, which generates a sequence of estimates

{( } according to the recuraion

-m+ + {nI(8) = A -0'M,..
i-i

where Yl ' " Yn denotes n independent observations.

It is easy to show, using the methods of Theorem 2, that the EM

algorithm is given, approximately, by

- {nj n S(yi, ), m - 0,1,
-,+1 -M c -S Ai -ai-1

Again, for the exponential family case of Theorem 3, the iteration is

exact, although a simpler version, of course, is

t+ - (in) (3)

I-n1  () I where _- 1 i - 1,*.,n

em

-18-
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